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Abstract. Quadratization refers to a transformation of an arbitrary
system of polynomial ordinary differential equations to a system with at
most quadratic right-hand side. Such a transformation unveils new vari-
ables and model structures that facilitate model analysis, simulation,
and control and offer a convenient parameterization for data-driven ap-
proaches. Quadratization techniques have found applications in diverse
fields, including systems theory, fluid mechanics, chemical reaction mod-
eling, and mathematical analysis.
In this study, we focus on quadratizations that preserve the stability
properties of the original model, specifically dissipativity at given equilib-
ria. This preservation is desirable in many applications of quadratization
including reachability analysis and synthetic biology. We establish the ex-
istence of dissipativity-preserving quadratizations, develop an algorithm
for their computation, and demonstrate it in several case studies.

Keywords: differential equations · quadratization · stability · variable
transformation

1 Introduction

Systems of ordinary differential equations (ODEs) are the standard choice when
it comes to modeling processes happening in continuous time, for example, in
the sciences and engineering. For a given dynamical process, one can derive
different ODE models, in particular, by choosing different sets of variables. It
has been observed in a variety of areas and contexts that these choices may have
a significant impact on the utility and relevance of the resulting model, and a
number of different types of variable transformations have been studied.

In this paper, we will study one such transformation, quadratization, which
aims at transforming an ODE system to a system where the right-hand side
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consists of polynomials of degree at most two. Let us illustrate this transforma-
tion on a toy example: we start with a scalar ODE x′ = x3 in a single variable
x = x(t) with cubic right-hand side. If we now augment the state space with an
additional coordinate y = x2, we can write the original equation as x′ = xy with
quadratic right-hand side, and we can do the same for y′:

y′ = 2xx′ = 2x4 = 2y2.

So, the transformation in this case is the following:

x′ = x3 →

{
x′ = xy,

y′ = 2y2.

It turns out that every polynomial ODE system can be similarly lifted to an at
most quadratic one: this fact has been established at least 100 years ago [2,27]
and has been rediscovered several times since then [8,10,11,17,24]. In the recent
years quadratization has been used in a number of application areas including
model order reduction [5,6,17,25,26], synthetic biology [13,20,21], numerical inte-
gration [16,18,19], and reachability analysis [14]. While it has been shown in [21]
that the problem of finding the minimal number of extra variables necessary for
quadratization is NP-hard, at least two practically useful software packages have
been developed for performing quadratization: BioCham [21] and QBee [7].

In the majority of the applications mentioned above, the constructed quadratic
ODE model is further used in the context of numerical simulations. It is, there-
fore, a natural question whether one can not only guarantee that the transformed
model is at most quadratic, but also that it preserves some desirable dynami-
cal/numerical properties of the original ODE system. To the best of our knowl-
edge, this question has not been studied systematically, and in this paper, we
initiate this line of research by studying dissipativity-preserving quadratizations.

We will say that an ODE system is dissipative at an equilibrium point if
the real parts of the eigenvalues of the linearization of the system around this
point are negative. In particular, dissipativity implies that the system is asymp-
totically stable at this point [23, Theorem 8.2.2]. The main contribution of the
paper is two-fold. First, we prove that, for every polynomial system dissipative
at several equilibrium points, there exists a quadratization which is also dissi-
pative at all these points. Second, we design and implement an algorithm to
search automatically for such quadratization attempting to minimize the dimen-
sion. Our algorithm is based on a combinatorial condition on the new variables
which is sufficient to guarantee that the resulting quadratic model can be made
dissipative as well. This combinatorial condition can be viewed as a general-
ization and formalization of the artificial stabilization used in [26, Section 4.1].
We implemented the new algorithm and we illustrate it in several case studies
including an application for reachability analysis (in combination with the al-
gorithm from [14]). Our implementation together with the examples from this
paper is available at [1].

The rest of the paper is organized as follows. In Section 2, we introduce the
main notions, quadratization, and dissipativity, and show that quadratization
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performed straightforwardly may not preserve dissipativity (and, thus, render
the model into a numerically unstable one). Section 3 contains the statement
and the proof of the main theoretical result of the paper (Theorem 1) that there
always exists a dissipativity-preserving quadratization for any collection of dis-
sipative equilibria. Based on the ideas from the proof, we give an algorithm
(Algorithm 2) for constructing such a quadratization in Section 4. We show-
case our implementation of this algorithm on several case studies in Section 5.
Concluding remarks are contained in Section 6.

2 Preliminaries

Throughout this section, we will consider a polynomial ODE system, that is, a
system of differential equations

x′ = p(x), (1)

where x = x(t) = (x1(t), . . . , xn(t)) is a vector of unknown functions and p =
(p1, . . . , pn) is a vector of n-variate polynomials p1, . . . , pn ∈ R[x].

Definition 1 (Quadratization). For a system (1), quadratization is a pair
consisting of

– a list of new variables

y1 = g1(x), . . . , ym = gm(x)

– and two lists

q1(x,y) = (q1,1(x), . . . , q1,n(y)) and q2(x,y) = (q2,1(x,y), . . . , q2,m(x,y))

of m+ n-variate polynomials in x and y = (y1, . . . , ym)

such that the degree of each of of q1 and q2 is at most two and

x′ = q1(x,y) and y′ = q2(x,y). (2)

If all the polynomials g1, . . . , gm are monomials, the quadratization is called
monomial quadratization.

Note that unlike, for example, [7, Definition 1], by quadratization we mean
not just the set of new variables but also the quadratic ODE system (2). The
reason for this is that, for a fixed set of new variables, there may be many
different systems of the shape (see Example 1) prescribed by (2) exhibiting
different numerical behaviors (see Example 2).

Example 1 (Quadratization). Consider the following scalar ODE

x′ = −x+ x3.
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Here we have n = 1 and p1(x) = −x + x3. Consider y = g1(x) = x2. Then we
can write

x′ = −x+ x3 = −x+ xy,

y′ = 2xx′ = −2x2 + 2x4 = −2y + 2y2.

Therefore, one possible quadratization is given by

g1(x) = x2, q1,1(x, y) = −x+ xy, q2,1(x, y) = −2y + 2y2.

As we have mentioned above, there may be different q’s corresponding to the
same g. In this example, we could take, for example, q2,1 = −2y+2y2+2(y−x2) =
−2x2 + 2y2 or q2,1 = y − 3x2 + 2y2. As we will see in Example 2, such choices
may have a dramatic impact on the numerical properties of the resulting ODE
system.

Definition 2 (Equilibrium). For a polynomial ODE system (1), a point x∗ ∈
Rn is called an equilibrium if p(x∗) = 0.

Definition 3 (Dissipativity). An ODE system (1) is called dissipative at an
equilibrium point x∗ if all the eigenvalues of the Jacobian J(p)|x=x∗ of p and
x∗ have negative real part.

It is known that a system which is dissipative at an equilibrium point x∗

is asymptotically stable at x∗ [23, Theorem 8.2.2], that is, any trajectory starting
in a small enough neighborhood of x∗ will converge to x∗ exponentially fast.

Note that if x∗ = 0, then the Jacobian at this point is simply the matrix of
the linear part of p(x).

Assume that x∗ ∈ Rn is an equilibrium of x′ = p(x), and consider a quadra-
tization of this system as in Definition 1. Then a direct computation shows that
(x∗,g(x∗)) is an equilibrium point of the resulting quadratic system (2).

Definition 4 (Dissipative quadratization). Assume that a system (1) is dis-
sipative at an equilibrium point x∗ ∈ Rn. Then a quadratization given by g,q1

and q2 (see Definition 1) is called dissipative at x∗ if the system

x′ = q1(x,y), y′ = q2(x,y)

is dissipative at a point (x∗,g(x∗)).

The following example shows that, even for the same new variables y = g(x),
different quadratizations may have significantly different stability properties.

Example 2 (Stable and unstable quadratizations). Consider the scalar ODE x′ =
−x+ x3 from Example 1. We have already found a quadratization for it using a
new variable y = g1(x) = x2 with the resulting quadratic system being

x′ = −x+ xy and y′ = −2y + 2y2. (3)
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We notice that we can add/subtract y− x2 with any coefficients from the right-
hand sides of the system. For example, we can obtain:

x′ = −x+ xy and y′ = −2y + 2y2 + 12(y − x2) = 10y − 12x2 + 2y2. (4)

Both systems above are quadratizations of the original system and, thus, math-
ematically, for any initial condition (x0, y0) satisfying y20 = x2

0, they must follow
the same trajectory. However, (3) is stable at (0, 0) while (4) is not. By numer-
ically integrating them, we can observe in Figure 1 that in practice (3) reflects
the dynamics of the original equation accurately and (4) heavily suffers from
numerical instability.

Fig. 1: Plot of the original equation, (3), and (4) with initial condi-
tion X0 = [x0, y0 = x2

0] = [0.1, 0.01]. Numerical method: “LSODA”
(uses hybrid Adams/BDF method with automatic stiffness detection) in
scipy.integrate.solve_ivp package [22,29].

3 Existence of dissipativity-preserving quadratizations

The main result of this section is the following theorem. Its proof is constructive
and is used to design an algorithm in Section 4.

Theorem 1. For every polynomial ODE system x′ = p(x), there exists a quadra-
tization that is dissipative at all the dissipative equilibria of x′ = p(x).

Remark 1. In fact, the key ingredients of the proof, Propositions 1 and 2, imply
a stronger statement: for every set of finitely many equilibria, there is a quadra-
tization such that the number of nonnegative eigenvalues of the Jacobian of the
quadratic system at these points is the same as for the original system.

The rest of the section will be devoted to proving Theorem 1. The main
technical notion will be an inner-quadratic set of polynomials.
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Definition 5 (Inner-quadratic set). As finite set g1(x), . . . , gm(x) ∈ R[x] of
nonconstant polynomials in x = (x1, . . . , xn) is called inner-quadratic if, for ev-
ery 1 ⩽ i ⩽ m, there exist (not necessarily distinct) a, b ∈ {x1, . . . , xn, g1, . . . , gm}
such that gi = ab.

A quadratization will be called inner-quadratic if the set of new variables g
is inner-quadratic. We will also always assume that the new variables are sorted
by degree, that is, deg g1 ⩽ deg g2 ⩽ . . . ⩽ deg gm.

The rationale behind the notion of inner-quadratic quadratization is that
at most quadratic relations between the new variables give us the flexibility to
“tune” the right-hand side of the resulting quadratic system in the same fashion
as we added a multiple of y−x2 in Example 2. These additional terms force the
trajectory to stay on the image of the map x → (x,y), on which the properties
of the original dynamics (such as dissipativity) are preserved. The following
definition formalizes this observation.

Definition 6 (Stabilizers). Consider a polynomial ODE system x′ = p(x) and
its inner-quadratic quadratization given by m new variables y = g(x) and right-
hand side q1(x,y),q2(x,y) of the resulting quadratic system as in Definition 1.
For every 1 ⩽ i ⩽ m, by the definition of inner-quadratic set, there exist ai, bi ∈
{x, y1, . . . , yi−1} such that the equality yi = aibi holds if we replace each yj with
gj(x). We define the i-th stabilizer by hi(x,y) := yi − aibi.

Since each stabilizer is at most quadratic and vanishes under the substitution
y = g(x), adding any stabilizer to any of q1,q2 still yields a quadratization of
x′ = p(x).

Example 3 (Stabilizers). Let us give an example of the stabilizers. Consider a
system:

x′
1 = −3x1 + x4

2, x′
2 = −2x2 + x2

1.

By applying Algorithm 1, we introduce the following new variables to obtain
an inner-quadratic quadratization:

y1 = x2
1, y2 = x2

2, y3 = x1x2, y4 = x3
2 = x2y2.

Then the corresponding stabilizers, according to the definition above, will be:

h1(x,y) = y1 − x2
1, h2(x,y) = y2 − x2

2,

h3(x,y) = y3 − x1x2, h4(x,y) = y4 − x2y2

Theorem 1 follows directly from the following two properties of inner-quadratic
quadratizations:

– every polynomial ODE system has an inner-quadratic quadratization (Propo-
sition 1);

– for any inner-quadratic quadratization, one can modify the right-hand sides
of the quadratic system (but not the new variables) using the stabilizers in
order to obtain a dissipativity-preserving quadratization (Proposition 2).
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Proposition 1. Every polynomial ODE system x′ = p(x) admits an inner-
quadratic quadratization. Furthermore, it can be chosen to be a monomial quadra-
tization.

Proof. We will show that the quadratization which is typically used to prove
the existence of a quadratization for every polynomial ODE system (see, e.g. [9,
Theorem 1]) is in fact inner-quadratic. For every 1 ⩽ i ⩽ n, we introduce di =
max
1⩽j⩽n

degxi
pj . Then it is proven in [9, Theorem 1] that the following set of new

variables yields a quadratization of x′ = p(x):

M = {xi1
1 . . . xin

n | ∀j : 0 ⩽ ij ⩽ dj ,
∑

ij > 1}.

Let g ∈ M. Then there exists 1 ⩽ j ⩽ n such that degxj
g > 0. Then we can

write g = (g/xj) ·xj , where g/xj is either in M or belongs to {x1, . . . , xn}. Thus,
M is an inner-quadratic set.

Proposition 2. Consider a system x′ = p(x) and its inner-quadratic quadra-
tization defined by new variables g(x) and the new right-hand side q1,q2 as in
Definition 1. Let x∗

1, . . . ,x
∗
ℓ be a finite subset of the equilibria of the system. Then

there exist vectors of quadratic polynomials r1(x,y), r2(x,y) such that g, r1, r2
define a quadratization for which the eigenvalues of the Jacobian at each equilib-
rium point of the form (x∗

i ,g(x
∗
i )) are the union of the eigenvalues of J(p)|x=x∗

i

and a set of numbers with negative real part.

Corollary 1. Consider a system x′ = p(x) and its inner-quadratic quadrati-
zation defined by new variables g(x) and the new right-hand side q1,q2 as in
Definition 1. Then there exist vectors of quadratic polynomials r1(x,y), r2(x,y)
such that g, r1, r2 define a quadratization which is dissipative at every dissipative
equilibrium of x′ = p(x).

Proof (Proof of Corollary 1). Since each dissipative equilibrium of the system is
an isolated root of the polynomial system obtained by equating the right-hand
side to zero, there are only finitely many of them. So we apply Proposition 2 to
this finite set of equilibria and obtain the desired quadratization.

Before proving Proposition 2, we establish a useful linear-algebraic lemma.

Lemma 1. Let A ∈ Rn×n be a square matrix and B ∈ Rn×n be an upper
triangular matrix with ones on the diagonal. Then there exists λ0 ∈ R such that,
for every λ > λ0, the real parts of all the eigenvalues of A− λB are negative.

Proof. Consider the characteristic polynomial of A− λB. It can be written as

det(A− λB − tI) = (−λ)n det(B −A/λ+ (t/λI)).

We set T = t/λ and rewrite the latter determinant as Q(T, 1/λ) := det((B +
T · I)− A/λ). Since Q is the determinant of a matrix with the entries linear in
T and 1/λ, it is a bivariate polynomial in T and 1/λ of total degree at most
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n. Furthermore, if we set λ = ∞ (equivalently, if we set 1/λ = 0), we have
Q(T, 0) = det(B+T · I). Since B is upper-triangular with ones on the diagonal,
this determinant is equal to det(B+T ·I) = (T+1)n, so Q(T, 1/λ) can be written
as Q(T, 1/λ) = (T + 1)n + 1

λp
(
T + 1, 1

λ

)
, where p is a bivariate polynomial of

the total degree at most n− 1 in T +1 and 1
λ . Let C be an upper bound for the

absolute value of the coefficients of p. Then, for λ > 1, we can bound:∣∣∣∣p(T + 1,
1

λ

)∣∣∣∣ < Cn2 max(|T + 1|n−1, 1).

Let T0 be any root of Q(T, 1/λ). Then we have

|T0 + 1|n ⩽
1

λ
Cn2 max(|T0 + 1|n−1, 1).

Let us take λ > Cn2. Then

|T0 + 1|n < max(|T0 + 1|n−1, 1) =⇒ |T0 + 1| < 1.

So, in this case, the real part of any root of Q will be negative. Then the same
is true for the characteristic polynomial of A− λB because these two polynomi-
als differ by scaling by a positive number λ. Therefore, λ0 can be taken to be
max(1, Cn2).

We will also use the following folklore analytic lemma.

Lemma 2. Let x′ = f(x) a system of polynomial differential equations of di-
mension n with an equilibrium point x∗. Let φ : Rn → Rn be an invertile change
of coordinates, and let y′ = g(y) be the image of the system under the coordi-
nate change. Then the matrices Jx(f)|x=x∗ and Jy(g)|y=φ(x∗) are conjugate. In
particular, they have the same eigenvalues.

Proof. By the chain rule, we have

y′ = (φ(x))′ = Jx(φ)x
′ = Jx(φ)|x=φ−1(y)f(φ

−1(y)) = g(y).

Then we can write Jy(g) as

Jx(φ)|x=φ−1(y)Jx(f)|x=φ−1(y)Jy(φ
−1) +

n∑
i=1

Aifi(φ
−1(y)),

where Ai is the Jacobian of the i-th column of Jx(φ)|x=φ−1(y). If we plug φ(x∗)
for y, since f(x∗) = 0, the latter sum will vanish, so we get

Jx(φ)|x=x∗Jx(f)|x=x∗Jy(φ
−1)|y=φ(x∗).

By the chain rule, the matrices Jx(φ)|x=x∗ and Jy(φ
−1)|y=φ(x∗) are inverses to

each other, so the Jacobians are indeed conjugated.
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Proof (Proof of Proposition 2). Before starting the proof, we would like to point
at Example 6 in the Appendix illustrating the main steps of the proof.

We define a map φ : Rn+m → Rn+m from a space with coordinates (x,y) to
a space with coordinates (x, z), where z = (z1, . . . , zm), by

φi(x,y) = xi for 1 ⩽ i ⩽ n,

φn+j(x,y) = yj − gj(x) for 1 ⩽ j ⩽ m.

This map is invertible with the inverse given by (φ−1)i(x, z) = xi for 1 ⩽ i ⩽ n
and (φ−1)n+j(x, z) = zj + gj(x) for 1 ⩽ j ⩽ m, so φ is bijective. Note that
φ(x◦,g(x◦)) = (x◦,0) for every x◦ ∈ Rn. We apply a change of coordinates
defined by φ to the quadratic system x′ = q1(x,y), y

′ = q2(x,y) and obtain a
(not necessarily quadratic) system of the form:

x′ = q̃1(x, z) and z′ = q̃2(x, z), (5)

where q̃1 = q1(x, z+ g(z)) and q̃2 can be found using the chain rule as follows:

z′ = (y−g(x))′ = q2(x, z+g(x))−Jx(g)x
′ = q2(x, z+g(x))−Jx(g)q1(x, z+g(x)).

(6)
Since the variety {(x◦,g(x◦)) | x◦ ∈ Rn} was an invariant variety of x′ =
q1(x,y), y′ = q2(x,y) by construction, the linear space {(x◦,0) | x◦ ∈ Rn}
is invariant for (5) and the restriction of (5) to this space coincides with the
original system x′ = p(x). This implies the following constraints on q̃1 and q̃2:

– q̃1(x, z) = p(x)+O(z), where O(z) stands for a polynomial with each mono-
mial containing at least one of the z;

– q̃2(x, z) = O(z).

Due to these constraints, for every x◦ ∈ Rn, the Jacobian of (q̃1, q̃2) at (x◦,0)
is of the form

Jx,z(q̃1, q̃2)|x=x◦,z=0 =

(
Jx(p)|x=x◦ ∗

0 Jz(q̃2)|x=x◦,z=0

)
(7)

Let h1(x,y), . . . , hm(x,y) be the stabilizers of the quadratization (see Defini-
tion 6). We take an arbitrary parameter λ ∈ R and consider q2,λ(x,y) defined by

q2,λ(x,y) = q2(x,y)− λh(x,y). (8)

Since the hi’s are stabilizers, g,q1,q2,λ is a quadratization of the original system
for any value of λ (see Definition 6). By using q2,λ instead of q2 in (6), we obtain
q̃2,λ = q̃2 − λh(x, z+ g(x)). Then, as in (13), we get

Jx,z(q̃1, q̃2,λ)|x=x◦,z=0 =

(
Jx(p)|x=x◦ ∗

0 (Jz(q̃2)− λJz(h))|x=x◦,z=0

)
(9)

Observe that, since every gi is of the form zi plus polynomial in x and z’s with
smaller indices, Jz(h) is a lower-triangular matrix with ones on the diagonal.
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Having such a convenient expression for the Jacobian, we consider the given
equilibria x∗

1, . . . ,x
∗
ℓ . For any x◦ ∈ {x∗

1, . . . ,x
∗
ℓ}, the eigenvalues of the Ja-

cobian (9) are the union of the eigenvalues of Jx(p)|x=x◦ and the eigenval-
ues of (Jz(q̃2) − λJz(h))|x=x◦,z=0. Applying Lemma 1 to ℓ pairs of matrices
A = Jz(q̃2)|x=x∗

i ,z=0 and B = Jz(h)|x=x∗
i ,z=0, we choose λ to be larger than any

of the λ0’s provided by the lemma. Then all the eigenvalues of this block will
also have negative real parts. By Lemma 2, the same true for the Jacobian of
x′ = q1(x,y), y

′ = q2,λ(x,y).

4 Algorithms

Based on the proof of Theorem 1, finding a dissipativity-preserving quadratiza-
tion can be done in two following steps:

(Step 1) finding an inner-quadratic quadratization
(Step 2) modifying the corresponding quadratic system to achieve dissipativity

at the given equilibria.

In this section, we give algorithms for both steps. Section 4.1 shows how to mod-
ify the quadratization algorithm from [7] to search for inner-quadratic quadra-
tizations. Using this algorithm as a building block, we give a general algorithm
for computing dissipativity-preserving quadratizations in Section 4.2.

4.1 Computing inner-quadratic quadratization

Our algorithm follows the general Branch-and-Bound (B&B) paradigm [28] and
is implemented based on the optimal monomial quadratization algorithm from [7,
Section 4]. Therefore, we will describe the algorithm briefly, mainly focusing on
the differences with the algorithm from [7].

We define each subproblem [7, Definition 3.3] as a set of new monomial
variables {y1(x), . . . , yℓ(x)}, and the subset of the search space [7, Definition
3.1] for the subproblem will be the set of all quadratizations including these
new variables. To each subproblem {y1(x), . . . , yℓ(x)}, the algorithm from [7]
assigns a set of generalized variables V (new variables, x’s, and 1) and a set
of nonsquares NS (monomials in the right-hand side which are not quadratic
in the generalized variables [7, Definition 4]). Additionally, we define the set
of non-inner-quadratic new variables NQ which consist of all the monomials
among y1(x), . . . , yℓ(x) which are not quadratic in {y1(x), . . . , yℓ(x), x1, . . . , xn}.
In particular, a subproblem is an inner-quadratic quadratization if and only if
NS = ∅ and NQ = ∅. Note that NS and NQ are disjoint since NQ ⊆ V and
V ∩NS = ∅.

Example 4. The notation previously introduced will now be demonstrated through
the system x′ = x4 + x3 (taken from [7, Example 4], to display the difference
between two algorithms). We consider a subproblem with one already added new
variable y1(x) := x3 (so, y′1 = 3x2x′ = 3x6 + 3x5). In this case, we have

V = {1, x, x3}, V 2 =
{
1, x, x2, x3, x4, x6

}
, NS = {x5}, NQ = {x3}.
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The algorithm starts from the subproblem ∅. For every iteration, we select
one element m from NS ∪ NQ (using a heuristic score function [7, Section 4.1])
and compute all the decompositions of the form m = m1m2, where m1 and
m2 are monomials. If m ∈ NS, for every such decomposition, we create a new
subproblem by adding the elements of {m1,m2} \V and at least one new variable
will be added due to the property of NS. If m ∈ NQ, we only do this for the
decompositions with m1 ̸= 1 and m2 ̸= 1.

We apply this operation recursively and stop when NS ∪ NQ = ∅ for each
branch. Therefore, we can find all the possible inner-quadratic quadratization of
the system. To improve the efficiency, we do not consider branches with more
new variables than in already found answers and use versions of domain-specific
pruning rules from [7]. The algorithm is summarized as Algorithm 1.

Algorithm 1: Computing optimal inner-quadratic quadratization
Input

- polynomial ODEs system x′ = p(x).
- a set of already chosen new variables y1(x), . . . , yℓ(x) (at the first call, ∅).
- the order N of the smallest inner-quadratic quadratization found so far (at

the first call, N = ∞).
Output a more optimal inner-quadratic quadratization containing y1(x), . . . , yℓ(x) if

such quadratization exists.

(Step 1) If y1(x), . . . , yℓ(x) is a inner-quadratic quadratization, that is, NS = ∅ and
NQ = ∅, and ℓ < N , return y1, . . . , yℓ.

(Step 2) Select the element m ∈ NS ∪NQ with the smallest score, compute all the
decompositions m = m1m2 as a product of two monomials. If m ∈ NQ, we
only consider the decompositions with m1 ̸= 1 and m2 ̸= 1.

(Step 3) For each decomposition m = m1m2 from the previous step, we consider a
subproblem {z1, . . . , zℓ} ∪ ({m1,m2} \ V ). If its size is less than N and none
of the pruning rules apply, we run recursively on this subproblem and
update N if a more optimal inner-quadratic quadratization has been found
by the recursive call.

4.2 Computing dissipativity-preserving quadratization

Based on the proof of Theorem 1, the main idea behind the search for dissipativity-
preserving quadratization is to start with any inner-quadratic quadratization,
and replace the right-hand side for the new variables, q2(x,y), by q2(x,y) −
λh(x,y) (see (8)) for increasing values of λ until the desired quadratization is
found. The detailed algorithm is given as Algorithm 2, the proof of its correct-
ness and termination is provided by Proposition 3, and a step-by-step example
is given in Example 5.

Proposition 3. Algorithm 2 always terminates and produces a correct output.
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Algorithm 2: Computing a quadratization dissipative at all provided
equilibria

Input polynomial ODE system x′ = p(x) and a list of its dissipative equilibria
x∗
1, . . . ,x

∗
ℓ ;

Output a quadratization of the system which is dissipative at x∗
1, . . . ,x

∗
ℓ .

(Step 1) Compute an inner-quadratic quadratization of x′ = p(x) using
Algorithm 1. Let the introduced variables be y1 = g1(x), . . . , ym = gm(x).
Let q1(x,y) and q2(x,y) be the right-hand sides of the quadratic system as
in Definition 1. If the corresponding quadratic system is dissipative at
x∗
1, . . . ,x

∗
ℓ , return it.

(Step 2) Construct the stabilizers h(x,y) for the quadratization from (Step 1) as in
Definition 6, and set λ = 1.

(Step 3) While True
(a) Construct a quadratic system Σλ

x′ = q1(x,y), y
′ = q2(x,y)− λh(x,y).

(b) Check if Σλ is dissipative at (x∗
i ,g(x

∗
i )) for every 1 ⩽ i ⩽ ℓ (using the

Routh-Hurwitz criterion [15, Chapter XV]). If yes, return
quadratization defined by g(x),q1(x,y),q2(x,y)− λh(x,y).
Otherwise, set λ = 2λ.

Proof. We will start with proving the correctness. Note that since g,q1,q2 com-
puted in (Step 1) yield a quadratization of the input system, and h vanishes if
y is replaced with g(x), then g,q1,q2−λh yield a quadratization of the original
system as well. Furthermore, if the algorithm returned at (Step 3)b, then this
quadratization is dissipative at x∗

1, . . . ,x
∗
ℓ .

The termination of the algorithm follows from the proof of Proposition 2. We
observe that the constructed q2−λh is exactly q2,λ in the notation of the proof,
and it is shown that there exists λ0 such that, for every λ > λ0, g,q1,q2,λ is
dissipative at x∗

1, . . . ,x
∗
ℓ . Since λ in the algorithm is doubled on each iteration of

the while loop, it will at some point exceed λ0, and the algorithm will terminate.

Example 5. We will illustrate how Algorithm 2 works with the following differ-
ential equation:

x′ = −x(x− a)(x− 2a) (10)

where a is a positive scalar parameter. The system’s equilibria are 0, a, 2a, and,
among them, x = 0 and x = 2a are dissipative. Regardless of the value of a,
Algorithm 1 called at (Step 1) will produce an inner-quadratic quadratization
with one new variable y = x2 and quadratic system:{

x′ = −xy + 3ax2 − 2a2x,

y′ = −2y2 + 6axy − 4a2x2

The stabilizer computed at (Step 2) will be h(x, y) = y − x2.
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Now let us fix a = 1 and continue with (Step 3). At (Step 3)a, we form a
new quadratic system Σλ:{

x′ = −xy + 3x2 − 2x,

y′ = −2y2 + 6xy − 4x2 − λ(y − x2)

For λ = 1, 2, 4, 8, . . . we check the eigenvalues of its Jacobian at points (0, 0) and
(2, 4). The Jacobian of Σλ is

J =

[
−y + 6x− 2 −x

6y + 2λx− 8x −4y − λ+ 6x

]
The eigenvalues we get on different iterations of the while-loop are summarized
in Table 1 (the ones with nonnegative real parts are bold).

λ at (0, 0) at (2, 4)

1 −2, −1 −2, 3

2 −2, −2 −2, 2

4 −2, −4 −2, 0

8 −2, −8 −2, −4

Table 1: Eigenvalues of the Jacobian of Σλ at (Step 3)b

From the table we see, that the algorithm will stop and return at λ = 8. Note
that our implementation offers three way of verifying the dissipativity: by com-
puting the eigenvalues directy numerically (with numpy) or symbolically (with
sympy) or by using the Routh-Hurwitz criterion [15, Chapter XV], [4, Chap-
ter 3] (via tbcontrol package [30]). The numerical evaluation of eigenvalues is
the fastest (see Tables 2 and 3) but does not yield fully rigorous guarantees, the
other two methods may be slower but provide such guarantees.

As the value of a increases, the original system is more unstable at equilib-
rium xeq = 2a, which requires a larger value of λ in order to make the system
dissipative at (xeq, x

2
eq). We compute the dissipative quadratization of the sys-

tem (10) with different values of a and the running time for each method, which
is presented in Table 2.

5 Case studies

The code for reproducing the results of the case studies below is available in the
“Examples” folder of [1].
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a λ (output) time (Numpy) time (Routh-Hurwitz ) time (Sympy)

1 8 33.63 36.89 40.98
5 128 34.04 38.36 39.84
10 512 33.07 41.91 43.66
50 16384 33.38 41.18 54.70
100 65536 34.90 43.06 54.31

Table 2: Output λ value and runtimes (in milliseconds) with different methods
for a of the system 10, results were obtained on a laptop Apple M2 Pro CPU @
3.2 GHz, MacOS Ventura 13.3.1, CPython 3.9.1. Runtime is averaged over 10
executions.

5.1 Application to reachability analysis

The reachability problem is: given an ODE system x′ = p(x), a set S ⊆ Rn of
possible initial conditions, and a time t ∈ R>0, compute a set containing the set

{x(t) | x′ = p(x) & x(0) ∈ S} ⊆ Rn

of all points reachable from S at time t. One recent approach to this problem
in the vicinity of a dissipative equilibrium x∗ proposed by Forets and Schilling
in [14] is to use Carleman linearization to reduce the problem to the linear case
which is well-studied. However, the approach described in [14] relied on explicit
bounds available only for quadratic systems under the assumption of dissipativity
and weak nonlinearity (see [14, definition 1 and 2]). Algorithm 2 allows this
restriction to be relaxed by computing a quadratization which preserves the
dissipativity of x∗.

We will illustrate this idea using the Duffing equation

x′′ = kx+ ax3 + bx′

which describes a damped oscillator with non-linear restoring force. The equation
can be written as a first-order system by introducing x1 := x, x2 := x′ as follows

x′
1 = x2, x′

2 = kx1 + ax3
1 + bx2.

We take a = 1, b = −1, k = 1. Then the system will have three equilibria
x∗ = (0, 0), (−1, 0), (1, 0), among which it will be dissipative only at the origin.
Algorithm 1 finds an inner-quadratic quadratization for the system using a new
variable y(x) = x2

1 resulting in the following quadratic system:

x′
1 = x2, x′

2 = ax1y + bx2 + kx1, y′ = 2x1x2.

Obviously, the quadratization is an inner-quadratic quadratization as well. By
applying Algorithm 2, we get λ = 1 with the following dissipative quadratization:x′

1 = x2

x′
2 = x1y + x1 − x2

y′ = −y + x2
1 + 2x1x2

(11)
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For the initial conditions x1(0) = 0.1, x2(0) = 0.1, y(0) = x1(0)
2 = 0.01,

system (11) satisfies the requirement of the algorithm from [14]. We apply the
algorithm with truncation order N = 5 and report the result of the reachability
analysis in Figure 2. The grey curve is the computed trajectory and the blue
area is an upper bound for the reachable set.

Fig. 2: Reachability analysis results with the computed trajectory (gray) and
overapproximation of the reachable set (light blue). Initial condition X0 =
[0.1, 0.1, 0.01], truncation order N = 5, and the estimate reevaluation time t = 4
(see [14, Section 6.1]).

5.2 Preserving bistability

An ODE model is called bistable (or multistable) if it has at least two stable
equilibria. This is a fundamental property for models in life sciences since such
a model describes a system that can exhibit a switch-like behaviour, in other
words, “make a choice” [12]. One of the smallest possible bistable models arising
from a simple chemical reaction network [31, Table 1] is given by the following
scalar ODE:

x′ = k1x
2 − k2x

3 − k3x,

where k1, k2, k3 are positive reaction rate constants. The equation has always one
dissipative equilibrium at x = 0. It has two more equilibria as long as k21 > 4k2k3,
and in this case, the largest of them will be dissipative as well. For any nonzero
parameter values, the inner-quadratic quadratization computed by Algorithm 1
will consist of a single new variable y(x) := x2 and the quadratic system:

x′ = k1w − k2xw − k3x, y′ = 2k1xy − 2k2y
2 − 2k3y. (12)
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For the case-study, we pick k1 = 0.4, k2 = 1, k3 = 0.03. For these parameter
values, the dissipative equilibria are x = 0 and x = 0.3, and Algorithm 2 finds
that (12) is dissipative at them already. The plot below shows that, indeed,
the trajectories of (12) staring in the neighbouthoods of (0, 0) and (0.3, 0.09)
converge to the respective equilibria.

Fig. 3: Plot of the original equation and system (12) with initial state X0 =
[x0, w0] = [−0.1, 0.01] (x(1), w(1)) and X0 = [0.4, 0.16] (x(2), w(2)).

5.3 Coupled Duffing oscillators

For a larger example, we will consider an ensemble consisting of Duffing oscilla-
tors from Section 5.1 which is an extended version of a pair of coupled oscillators
from [3]. The model consisting of n oscillators is parametrized by a number δ ∈ R
and a matrix A ∈ Rn×n, and is defined by the following system:

x′′ = Ax− (Ax)3 − δx′,

where x = [x1, . . . , xn]
⊤ are the positions of the oscillators, and (Ax)3 is the

component-wise cube of vector Ax. Similarly to Section 5.1, we can rewrite
this as a first-order system of dimension 2n by introducing new variables z =
[z1, . . . , zn]

⊤ for the derivatives of x:

ẋ = z, z′ = Ax− (Ax)3 − δz.

Similarly, to [3, Table 1], if the eigenvalues of A are positive real numbers, then
this system has 2n dissipative equilibria. We run our code for n = 1, . . . , 8 taking
δ = 2 and A being the tridiagonal matrix with ones on the diagonal and 1

3 on the
adjacent diagonals. Table 3 reports, for each n, the number of introduced vari-
ables and the times for computing inner-quadratic quadratization (Algorithm 1)



Dissipative quadratizations of polynomial ODE systems 17

and making it dissipative at all 2n equilibria (Algorithm 2 using numpy for the
eigenvalue computation or the symbolics Routh-Hurwitz criterion). We can ob-
serve that numerical methods for checking the dissipativity scale well (given that
the number of points grows exponentially) while symbolic methods become very
costly as the dimension grows.

n dimension # equilibria # new vars time (inner-quadratic)
time (dissipative)

numpy Routh-Hurwitz

1 2 2 1 0.02 0.05 0.07
2 4 4 2 0.07 0.19 0.65
3 6 8 4 0.20 0.74 36.57
4 8 16 5 0.39 1.62 1179.33
5 10 32 7 0.72 4.30 > 2000
6 12 64 9 1.20 11.28 > 2000
7 14 128 10 1.75 28.23 > 2000
8 16 256 12 2.63 78.70 > 2000
Table 3: Runtimes (in seconds) for n coupled Duffing oscillators, results were
obtained on a laptop with the following parameters: Apple M2 Pro CPU @ 3.2
GHz, MacOS Ventura 13.3.1, CPython 3.9.1.

6 Conclusions

While various quadratization techniques have been used recently in a number
of application areas, and in most of the cases this was primarily involving nu-
merical simulations, we are not aware of prior general results on the stability
properties of the quadratized systems. In this paper, we studied quadratizations
that preserve dissipativity at prescribed equilibria. First, we have shown that,
for any set of dissipative equilibria such a quadratization exists. Then we have
presented an algorithm capable of computing a quadratization with this property
with dimension low enough to be of interest for applications. We showcase the
algorithm on several case studies, including examples from reachability analysis
and chemical reaction network theory.

The key ingredient of our algorithm is the computation of a quadratization
(we call it inner-quadratic) which gives us substantial control over the stability
properties of the quadratized system. We expect that this construction will be
useful for further research in this direction.

In future research, we plan to extend the results of the paper in different
directions. One natural problem is to extend the results and algorithms from
the present paper beyond polynomial systems, for example, by designing an
algorithm for dissipativity-preserving polynomialization. Additionally, exploring
the preservation of other stability properties, such as limit cycles, attractors, and
Lyapunov functions, is another promising avenue for research.
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A Example illustrating the proof of Proposition 2

Example 6. We use the Example 3 (Stabilizers) to illustrate the proof for
Proposition 2. Consider the following system:

x′
1 = −3x1 + x4

2, x′
2 = −2x2 + x2

1.

By applying Algorithm 1, we introduce the following new variables to obtain
the inner-quadratic system

y1 = x2
1, y2 = x2

2, y3 = x1x2, y4 = x3
2 = x2y2.

Then we got the inner-quadratic system as follows:

x′ = q1(x,y) :

{
x′
1 = −3x1 + y22

x′
2 = −2x2 + x2

1

y′ = q2(x,y) :


y′1 = 2y4y3 − 6x2

1

y′2 = 2y1x2 − 4x2
2

y′3 = y4y2 + y1x1 − 5x1x2

y′4 = 3y1y2 − 6y2x2

We apply the change of coordinates defined by φ to the inner-quadratic sys-
tem x′ = q1(x,y), y

′ = q2(x,y) and obtain the following system:

x′ = q̃1(x, z) :

{
x′
1 = −3x1 + x4

2 + 2x2
2z2 + z22

x′
2 = x2

1 − 2x2

z′ = q̃2(x, z) :


z′1 = −4x1x

2
2z2 + 2x1x2z4 − 2x1z

2
2 + 2x3

2z3 + 2z3z4

z′2 = 2x2z1

z′3 = x1z1 − x3
2z2 + x2

2z4 − x2z
2
2 + z2z4

z′4 = 3x2
1z2 + 3x2

2z1 − 6x2z2 + 3z1z2

One can observe that the system satisfies to the constraints on q̃1 and q̃2 that
q̃1(x, z) = p(x)+O(z) and q̃2(x, z) = O(z) where O(z) stands for a polynomial
with each monomial containing at least one of the z. Then, we can compute the
Jacobian matrix and obtain the following matrix:

Jx,z(q̃1, q̃2)|x=x◦,z=0 =


−3 4x3

2 0 2x2
2 0 0

2x1 −2 0 0 0 0
0 0 0 −4x1x

2
2 2x3

2 2x1x2

0 0 2x2 0 0 0
0 0 x1 −x3

2 0 x2
2

0 0 3x2
2 3x2

1 − 6x2 0 0

 (13)

We have the stabilizers of the quadratization as follows:

h1(x,y) = y1 − x2
1, h2(x,y) = y2 − x2

2,

h3(x,y) = y3 − x1x2, h4(x,y) = y4 − x2y2
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We take an arbitrary parameter λ ∈ R and consider q2,λ(x,y) as the definition
in equation 8:

q2,λ(x,y) = q2(x,y)− λh(x,y) =


2y4y3 − 6x2

1 − λ(y1 − x2
1)

2y1x2 − 4x2
2 − λ(y2 − x2

2)

y4y2 + y1x1 − 5x1x2 − λ(y3 − x1x2)

3y1y2 − 6y2x2 − λ(y4 − x2y2)

(14)
With the same method of coordinates change, we obtain:

q̃2,λ =


(−4x1x

2
2z2 + 2x1x2z4 − 2x1z

2
2 + 2x3

2z3 + 2z3z4) +−λz1

(2x2z1)− λz2

(x1z1 − x3
2z2 + x2

2z4 − x2z
2
2 + z2z4)− λz3

(3x2
1z2 + 3x2

2z1 − 6x2z2 + 3z1z2)− λ(z4 − x2z2)

= q̃2−λh(x, z+g(x))

where we have

h(x, z+ g(x)) =


(z1 + x2

1)− x2
1 = z1

(z2 + x2
2)− x2

2 = z2

(z3 + x1x2)− x1x2 = z3

(z4 + x3
2)− x2(z2 + x2

2) = z4 − x2z2

Taking the Jacobian of h against z, we can obtain the following matrix:

λJz(h))|x=x◦,z=0 = λ


1 0 0 0
0 1 0 0
0 0 1 0
0 x2 0 1


which is a lower-triangular matrix with ones on the diagonal.
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