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Quadratization: what is it?

Toy example:
Consider a one-dimensional ODE system:

x′ = x4 (degree of RHS = 4)

Goal: Add new variables that ⇒ deg ⩽ 2

Solution: We introduce y = x3:
x′ = xy

y′ = 3x2x′ = 3x6 = 3y2

DONE!
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Quadratization: formal definition

Consider a polynomial system of differential equations

x′ = p(x), (1)

where x = x(t) = (x1(t), . . . , xn(t)) is a vector of unknown functions and
p = (p1, . . . , pn) s.t. p1, . . . , pn ∈ R[x].

New variables y1 = g1(x), · · · , ym = gm(x) are called quadratization if
there exist

q1(x,y) = (q1,1(x), . . . , q1,n(y)) and q2(x,y) = (q2,1(x,y), . . . , q2,m(x,y))

such that deg(q1), deg(q2) ⩽ 2, we have

x′ = q1(x,y) and y′ = q2(x,y)

Previous example: for x′ = x4 we have n = 1,m = 1

x′ = p1(x) = x4 ⇒ y = g1(x) = x3 ⇒

{
x′ = xy = q1,1(x, y)

y′ = 3y2 = q2,1(x, y)
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Quadratization: why important?

■ Synthesis of chemical reaction networks:

deg ⩽ 2 ⇔ bimolecular network

(Hemery,Fages,Soliman’2020)

A chemical reaction network (CRN) comprises a set of reactants, a set of
products, and a set of reactions:

C+O2 −→ CO2

We express the concentration of chemicals as [·] and k as the reaction rate
constant, we can write the chemical kinetics functions:

d[C]

dt
= −k · [C] · [O2]

d[O2]

dt
= −k · [C] · [O2]

d[CO2]

dt
= k · [C] · [O2]



Quadratization: why important?

■ Synthesis of chemical reaction networks:

deg ⩽ 2 ⇔ bimolecular network

(Hemery,Fages,Soliman’2020)
A chemical reaction network (CRN) comprises a set of reactants, a set of
products, and a set of reactions:

C+O2 −→ CO2

We express the concentration of chemicals as [·] and k as the reaction rate
constant, we can write the chemical kinetics functions:

d[C]

dt
= −k · [C] · [O2]

d[O2]

dt
= −k · [C] · [O2]

d[CO2]

dt
= k · [C] · [O2]



Quadratization: why important?

But, how quadratization helps?

From Collision theory, the reactions involving 3+ reactants are rare ⇒
Restriction of at most two reactant molecules in reactions is practically
important ⇒ Elementary CRN (ECRN)

Advantages of Elementary CRN (ECRN):
■ Turing-complete model of analog computation
■ Get accurate results in arbitrary precision



Quadratization: why important?

■ Synthesis of chemical reaction networks:

deg ⩽ 2 ⇔ bimolecular network

(Hemery,Fages,Soliman’2020)

■ Model order reduction:
▶ Quadratize
▶ Use a dedicated algorithm for reducing a quadratic system

(Gu’2011, Kramer& Willcox’2019)

■ Solving differential equations numerically:
(Cochelin & Vergez’2009, Guillot, Cochelin, Vergez’2019)

■ Reachability analysis: explicit error bounds for Carleman
linearization in the quadratic case
(Marcelo Forets & Christian Schilling 2021, more in later)



Quadratization: why important?

■ Synthesis of chemical reaction networks:

deg ⩽ 2 ⇔ bimolecular network

(Hemery,Fages,Soliman’2020)

■ Model order reduction:
▶ Quadratize
▶ Use a dedicated algorithm for reducing a quadratic system

(Gu’2011, Kramer& Willcox’2019)

■ Solving differential equations numerically:
(Cochelin & Vergez’2009, Guillot, Cochelin, Vergez’2019)

■ Reachability analysis: explicit error bounds for Carleman
linearization in the quadratic case
(Marcelo Forets & Christian Schilling 2021, more in later)



Quadratization: why important?

■ Synthesis of chemical reaction networks:

deg ⩽ 2 ⇔ bimolecular network

(Hemery,Fages,Soliman’2020)

■ Model order reduction:
▶ Quadratize
▶ Use a dedicated algorithm for reducing a quadratic system

(Gu’2011, Kramer& Willcox’2019)

■ Solving differential equations numerically:
(Cochelin & Vergez’2009, Guillot, Cochelin, Vergez’2019)

■ Reachability analysis: explicit error bounds for Carleman
linearization in the quadratic case
(Marcelo Forets & Christian Schilling 2021, more in later)



Quadratization: what do we know about it?

Thoerem:
1 Every ODE system has a quadratization.

(Appelroth’1902, Lagutinskii’1911)

2 Computing optimal quadratization is an NP-hard problem
(Hemery, Fages, Soliman’ 2020)

Existing software (monomial quadratizations):
1 BioCham (Hemery, Fages, Soliman’ 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

2 QBee (Bychkov, Pogudin’ 2021)
Branch & Bound search. Optimality guaranteed.
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Our problem?

A natural question: How to find such a quadratization that preserve certain
dynamical/numerical properties of the original system?

Consider an ODE x′ = −x+ x3, add a new variable y = g1(x) = x2:

x′ = −x+ xy and y′ = −2y + 2y2. (2)

We can add/subtract y − x2 with any coefficients from the RHS:

x′ = −x+ xy and y′ = −2y + 2y2 + 12(y − x2) = 10y − 12x2 + 2y2. (3)
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Our problem?

Figure: Plot of the equation (2) and (3) after quadratizaiton with initial condition
X0 = [x0, y0 = x2

0] = [0.1, 0.01].

The two systems are mathematically equivalent; however, the
results obtained through numerical integration differ!!!
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Our solution: some definitions

What is equilibrium, dissipativity of an ODE system?

Definition (Equilibrium)

For a polynomial ODE system x′ = p(x), a point x∗ ∈ Rn is called an
equilibrium if p (x∗) = 0.

Example: Consider
x′ = −x(x− 1)(x− 2) (4)

Set the RHS equal to 0 ⇒ three equilibria: 0, 1, 2.



Our solution: some definitions

Definition (Dissipativity)

An ODE system x′ = p(x) is called dissipative at an equilibrium point x∗ if
all the eigenvalues of the Jacobian J(p)|x=x∗ of p and x∗ have negative
real part.

Important fact: Dissipativity at x∗ =⇒ Asymptotic stability at x∗

(i.e. exponential convergence to x∗ in a small neighbourhood)

Example: Among the three equilibria 0, 1, 2 of x′ = −x(x− 1)(x− 2),
x = 0 and x = 2 are dissipative but x = 1 is not:

J(p)|x=1 =
[
−3x2 + 6x− 2

]∣∣
x=1

= [1]

which has a positive real part in its eigenvalue.



Our solution: some definition

Trajectories of the differential equation x′ = −x(x− 1)(x− 2)

Trajectory from x0 = 1.1 converge to equilibrium x = 2 instead of x = 1



Dissipative quadratization: what?

Definition (Dissipative quadratization)

Assume that a system x′ = p(x) is dissipative at an equilibrium x∗ ∈ Rn.
Then a quadratization given by y = g (new variables introduced), q1 and
q2 is called dissipative at x∗ if the system

x′ = q1(x,y), y′ = q2(x,y)

is dissipative at a point (x∗,g (x∗)).

Theorem (Main theoretical result)

For every polynomial ODE system x′ = p(x), there exists a quadratization
that is dissipative at all the dissipative equilibria of x′ = p(x).

How we find such a quadratization?
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Dissipative quadratization: How? (Overview)



Dissipative quadratization: How? (Example)

Back to x′ = −x(x− 1)(x− 2), start with a quadratization via y = x2:

{
x′ = −xy + 3x2 − 2x
y′ = −2y2 + 6xy − 4x2

The system is not yet dissipative but has a “good” combinatorial property:
the new variable y can be written as x2

⇒
We can add y − x2 (stabilizer) to RHS:

x′ = −xy + 3x2 − 2x

y′ = −2y2 + 6xy − 4x2 − λ
(
y − x2)

↑

still a quadratization
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Dissipative quadratization: How? (Example, cntd.)

Jacobian of the previous system:

J =

[
−y + 6x− 2 −x

6y − 8x −4y + 6x

]
︸ ︷︷ ︸

inner-quadratic

−λ

[
0 0

−2x 1

]
︸ ︷︷ ︸

stabilizer

For λ = 1, 2, 4, 8, · · · we check the eigenvalues on equilibria (0, 0) and (2, 4),
results summarized in the following table:

λ at (0, 0) at (2, 4)

1 −2,−1 −2,3

2 −2,−2 −2,2

4 −2,−4 −2,0

8 −2,−8 -2,-4
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Dissipative quadratization: How? (Formalization)

What is the “good” combinatorial property: Inner-quadratic.

set of variables: {x1, · · · , xn︸ ︷︷ ︸
original

, g1, · · · , gm︸ ︷︷ ︸
introduced

}

Inner quadratic: ∀1 ⩽ i ⩽ m, there exist (not necessarily distinct) a, b ∈
{x1, . . . , xn, g1, . . . , gm} such that gi = ab.

Example: {x, g1 = x2, g2 = x4}: !, {x, g1 = x2, g2 = x5}: %

A quadratization will be called inner-quadratic if the set of new variables g
is inner-quadratic.

How to find the inner-quadratic quadratization: Branch & Bound search.
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Dissipative quadratization: Algorithm

Input: a system x′ = p(x) with a list of dissipative equilibria x∗
1, . . . ,x

∗
ℓ :

(Step 1) Compute an inner-quadratic quadratization with introduced variables
y1 = g1(x), . . . , ym = gm(x), q1(x,y), and q2(x,y).

(Step 2) Construct the stabilizer h(x,y) for the quadratization and set the
coefficient of stabilizer λ = 1

(Step 3) While True:
▶ Construct a quadratic system Σλ{

x′ = q1(x,y)

y′ = q2(x,y)− λh(x,y)

▶ Check if Σλ dissipative at
(
x∗
i ,g

(
x∗
i

))
for every 1 ⩽ i ⩽ ℓ, if yes,

return, otherwise, set λ = 2λ.

As λ is large enough, the system Σλ is dissipative at all equilibria: Proofs
in Proposition 2 and 3 in the paper.
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y1 = g1(x), . . . , ym = gm(x), q1(x,y), and q2(x,y).

(Step 2) Construct the stabilizer h(x,y) for the quadratization and set the
coefficient of stabilizer λ = 1

(Step 3) While True:
▶ Construct a quadratic system Σλ{

x′ = q1(x,y)

y′ = q2(x,y)− λh(x,y)

▶ Check if Σλ dissipative at
(
x∗
i ,g

(
x∗
i

))
for every 1 ⩽ i ⩽ ℓ, if yes,

return, otherwise, set λ = 2λ.

As λ is large enough, the system Σλ is dissipative at all equilibria: Proofs
in Proposition 2 and 3 in the paper.
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Inner-quadratic: Why and How?

Retinal behind:
Quadratic relation between variables ⇒ Flexibility to “tune” the RHS ⇒
Adding the stabilizers to force the trajectory to be stable.



Applications

Applications of dissipative quadratization include:

■ Preserving bistability: fundamental property for models in life sciences
and chemical reaction network.

■ Reachability analysis
(more details later)
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Application to reachability analysis

Given an ODE system x′ = p(x), a set S ⊆ Rn of possible initial conditions,
and a time t ∈ R>0, compute a set containing the set{

x(t) | x′ = p(x) & x(0) ∈ S
}
⊆ Rn

of all points reachable from S at time t.

One recent approach: Using Carleman linearization to reduce the problem
to the linear case. (Forets, Schilling ’ 2021)

Restriction: quadratic system with dissipativity and weak nonlinearity.

Our algorithm relaxes the restriction!
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Application to reachability analysis

Consider the Duffing equation:

x′′ = x+ x3 − x′

rewrite as a first-order system by introducing x1 := x, x2 := x′:

x′
1 = x2, x′

2 = x1 + x3
1 − x2.

Three equilibria: x∗ = (0, 0), (−1, 0), (1, 0).

Dissipative equilibrium: Origin (0, 0).

Inner-quadratic quadratization: via a new variable y(x) = x2
1:

x′
1 = x2, x′

2 = x1y − x2 + x1, y′ = 2x1x2.

Dissipative quadratization: take λ = 1 and add the stabilizer:
x′
1 = x2

x′
2 = x1y + x1 − x2

y′ = −y + x2
1 + 2x1x2
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Application to reachability analysis

For the initial conditions x1(0) = 0.1, x2(0) = 0.1, y(0) = x1(0)
2 = 0.01, the

system satisfies dissipativity and weak nonlinearity, we apply the
reachability algorithm with truncation order N = 5:

Figure: Reachability analysis results with the computed trajectory (gray) and
overapproximation of the reachable set (light blue). The estimate reevaluation
time t = 4.



Conclusion and future work

Summary:

■ We proved that in any dissipative equilibria of the polynomial ODE
system, the dissipative quadratization exists.

■ We presented an algorithm capable of computing dissipative
quadratization by first transforming the system into an inner-quadratic
system.

■ We showed applications in reachability analysis and numerical
simulations.

Future work:

■ Extend the results and algorithms beyond the polynomial system
■ Exploring the preservation of other stability properties, such as limit

cycles, attractors, and Lyapunov functions.
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Thank you for your attention!

DQbee: https://github.com/yubocai-poly/DQbee

Figure: Paper Figure: Code
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