
Dissipative quadratizations of polynomial ODE systems

Yubo Cai 1 Gleb Pogudin 2

1École Polytechnique

2LIX, CNRS, École Polytechnique

April 10 - TACAS 2024 - Luxembourg



Quadratization: what is it?

Toy example:
Consider a one-dimensional ODE system:

x′ = x4 (degree of RHS = 4)

Goal: Add new variables that ⇒ deg ⩽ 2

Solution: We introduce y = x3:
x′ = xy

y′ = 3x2x′ = 3x6 = 3y2

DONE!



Quadratization: what is it?

Toy example:
Consider a one-dimensional ODE system:

x′ = x4 (degree of RHS = 4)

Goal: Add new variables that ⇒ deg ⩽ 2

Solution: We introduce y = x3:
x′ = xy

y′ = 3x2x′ = 3x6 = 3y2

DONE!



Quadratization: what is it?

Toy example:
Consider a one-dimensional ODE system:

x′ = x4 (degree of RHS = 4)

Goal: Add new variables that ⇒ deg ⩽ 2

Solution: We introduce y = x3:
x′ = xy

y′ = 3x2x′

= 3x6 = 3y2

DONE!



Quadratization: what is it?

Toy example:
Consider a one-dimensional ODE system:

x′ = x4 (degree of RHS = 4)

Goal: Add new variables that ⇒ deg ⩽ 2

Solution: We introduce y = x3:
x′ = xy

y′ = 3x2x′ = 3x6

= 3y2

DONE!



Quadratization: what is it?

Toy example:
Consider a one-dimensional ODE system:

x′ = x4 (degree of RHS = 4)

Goal: Add new variables that ⇒ deg ⩽ 2

Solution: We introduce y = x3:
x′ = xy

y′ = 3x2x′ = 3x6 = 3y2

DONE!



Quadratization: formal definition

Consider a polynomial system of differential equations

x′ = p(x), (1)

where x = x(t) = (x1(t), . . . , xn(t)) is a vector of unknown functions and
p = (p1, . . . , pn) s.t. p1, . . . , pn ∈ R[x].

New variables y1 = g1(x), · · · , ym = gm(x) are called quadratization if
there exist

q1(x,y) = (q1,1(x), . . . , q1,n(y)) and q2(x,y) = (q2,1(x,y), . . . , q2,m(x,y))

such that deg(q1), deg(q2) ⩽ 2, we have

x′ = q1(x,y) and y′ = q2(x,y)

Previous example: for x′ = x4 we have n = 1,m = 1

x′ = p1(x) = x4 ⇒ y = g1(x) = x3 ⇒

{
x′ = xy = q1,1(x, y)

y′ = 3y2 = q2,1(x, y)



Quadratization: formal definition

Consider a polynomial system of differential equations

x′ = p(x), (1)

where x = x(t) = (x1(t), . . . , xn(t)) is a vector of unknown functions and
p = (p1, . . . , pn) s.t. p1, . . . , pn ∈ R[x].

New variables y1 = g1(x), · · · , ym = gm(x) are called quadratization if
there exist

q1(x,y) = (q1,1(x), . . . , q1,n(y)) and q2(x,y) = (q2,1(x,y), . . . , q2,m(x,y))

such that deg(q1), deg(q2) ⩽ 2, we have

x′ = q1(x,y) and y′ = q2(x,y)

Previous example: for x′ = x4 we have n = 1,m = 1

x′ = p1(x) = x4 ⇒ y = g1(x) = x3 ⇒

{
x′ = xy = q1,1(x, y)

y′ = 3y2 = q2,1(x, y)



Quadratization: formal definition

Consider a polynomial system of differential equations

x′ = p(x), (1)

where x = x(t) = (x1(t), . . . , xn(t)) is a vector of unknown functions and
p = (p1, . . . , pn) s.t. p1, . . . , pn ∈ R[x].

New variables y1 = g1(x), · · · , ym = gm(x) are called quadratization if
there exist

q1(x,y) = (q1,1(x), . . . , q1,n(y)) and q2(x,y) = (q2,1(x,y), . . . , q2,m(x,y))

such that deg(q1), deg(q2) ⩽ 2, we have

x′ = q1(x,y) and y′ = q2(x,y)

Previous example: for x′ = x4 we have n = 1,m = 1

x′ = p1(x) = x4 ⇒ y = g1(x) = x3 ⇒

{
x′ = xy = q1,1(x, y)

y′ = 3y2 = q2,1(x, y)



Quadratization: why important?

■ Synthesis of chemical reaction networks:

deg ⩽ 2 ⇔ bimolecular network

(Hemery,Fages,Soliman’2020)

A chemical reaction network (CRN) comprises a set of reactants, a set of
products, and a set of reactions:

C+O2 −→ CO2

We express the concentration of chemicals as [·] and k as the reaction rate
constant, we can write the chemical kinetics functions:

d[C]

dt
= −k · [C] · [O2]

d[O2]

dt
= −k · [C] · [O2]

d[CO2]

dt
= k · [C] · [O2]



Quadratization: why important?

■ Synthesis of chemical reaction networks:

deg ⩽ 2 ⇔ bimolecular network

(Hemery,Fages,Soliman’2020)
A chemical reaction network (CRN) comprises a set of reactants, a set of
products, and a set of reactions:

C+O2 −→ CO2

We express the concentration of chemicals as [·] and k as the reaction rate
constant, we can write the chemical kinetics functions:

d[C]

dt
= −k · [C] · [O2]

d[O2]

dt
= −k · [C] · [O2]

d[CO2]

dt
= k · [C] · [O2]



Quadratization: why important?

But, how quadratization helps?

From Collision theory, the reactions involving 3+ reactants are rare ⇒
Restriction of at most two reactant molecules in reactions is practically
important ⇒ Elementary CRN (ECRN)

Advantages of Elementary CRN (ECRN):
■ Turing-complete model of analog computation
■ Get accurate results in arbitrary precision



Quadratization: why important?

■ Synthesis of chemical reaction networks:

deg ⩽ 2 ⇔ bimolecular network

(Hemery,Fages,Soliman’2020)

■ Model order reduction:
▶ Quadratize
▶ Use a dedicated algorithm for reducing a quadratic system

(Gu’2011, Kramer& Willcox’2019)

■ Solving differential equations numerically:
(Cochelin & Vergez’2009, Guillot, Cochelin, Vergez’2019)

■ Reachability analysis: explicit error bounds for Carleman
linearization in the quadratic case
(Marcelo Forets & Christian Schilling 2021, more in later)



Quadratization: why important?

■ Synthesis of chemical reaction networks:

deg ⩽ 2 ⇔ bimolecular network

(Hemery,Fages,Soliman’2020)

■ Model order reduction:
▶ Quadratize
▶ Use a dedicated algorithm for reducing a quadratic system

(Gu’2011, Kramer& Willcox’2019)

■ Solving differential equations numerically:
(Cochelin & Vergez’2009, Guillot, Cochelin, Vergez’2019)

■ Reachability analysis: explicit error bounds for Carleman
linearization in the quadratic case
(Marcelo Forets & Christian Schilling 2021, more in later)



Quadratization: why important?

■ Synthesis of chemical reaction networks:

deg ⩽ 2 ⇔ bimolecular network

(Hemery,Fages,Soliman’2020)

■ Model order reduction:
▶ Quadratize
▶ Use a dedicated algorithm for reducing a quadratic system

(Gu’2011, Kramer& Willcox’2019)

■ Solving differential equations numerically:
(Cochelin & Vergez’2009, Guillot, Cochelin, Vergez’2019)

■ Reachability analysis: explicit error bounds for Carleman
linearization in the quadratic case
(Marcelo Forets & Christian Schilling 2021, more in later)



Quadratization: what do we know about it?

Thoerem:
1 Every ODE system has a quadratization.

(Appelroth’1902, Lagutinskii’1911)

2 Computing optimal quadratization is an NP-hard problem
(Hemery, Fages, Soliman’ 2020)

Existing software (monomial quadratizations):
1 BioCham (Hemery, Fages, Soliman’ 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

2 QBee (Bychkov, Pogudin’ 2021)
Branch & Bound search. Optimality guaranteed.



Quadratization: what do we know about it?

Thoerem:
1 Every ODE system has a quadratization.

(Appelroth’1902, Lagutinskii’1911)

2 Computing optimal quadratization is an NP-hard problem
(Hemery, Fages, Soliman’ 2020)

Existing software (monomial quadratizations):
1 BioCham (Hemery, Fages, Soliman’ 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

2 QBee (Bychkov, Pogudin’ 2021)
Branch & Bound search. Optimality guaranteed.



Quadratization: what do we know about it?

Thoerem:
1 Every ODE system has a quadratization.

(Appelroth’1902, Lagutinskii’1911)

2 Computing optimal quadratization is an NP-hard problem
(Hemery, Fages, Soliman’ 2020)

Existing software (monomial quadratizations):
1 BioCham (Hemery, Fages, Soliman’ 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

2 QBee (Bychkov, Pogudin’ 2021)
Branch & Bound search. Optimality guaranteed.



Quadratization: what do we know about it?

Thoerem:
1 Every ODE system has a quadratization.

(Appelroth’1902, Lagutinskii’1911)

2 Computing optimal quadratization is an NP-hard problem
(Hemery, Fages, Soliman’ 2020)

Existing software (monomial quadratizations):
1 BioCham (Hemery, Fages, Soliman’ 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

2 QBee (Bychkov, Pogudin’ 2021)
Branch & Bound search. Optimality guaranteed.



Quadratization: what do we know about it?

Thoerem:
1 Every ODE system has a quadratization.

(Appelroth’1902, Lagutinskii’1911)

2 Computing optimal quadratization is an NP-hard problem
(Hemery, Fages, Soliman’ 2020)

Existing software (monomial quadratizations):
1 BioCham (Hemery, Fages, Soliman’ 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

2 QBee (Bychkov, Pogudin’ 2021)
Branch & Bound search. Optimality guaranteed.



Our problem?

A natural question: How to find such a quadratization that preserve certain
dynamical/numerical properties of the original system?

Consider an ODE x′ = −x+ x3, add a new variable y = g1(x) = x2:

x′ = −x+ xy and y′ = −2y + 2y2. (2)

We can add/subtract y − x2 with any coefficients from the RHS:

x′ = −x+ xy and y′ = −2y + 2y2 + 12(y − x2) = 10y − 12x2 + 2y2. (3)



Our problem?

A natural question: How to find such a quadratization that preserve certain
dynamical/numerical properties of the original system?

Consider an ODE x′ = −x+ x3, add a new variable y = g1(x) = x2:

x′ = −x+ xy and y′ = −2y + 2y2. (2)

We can add/subtract y − x2 with any coefficients from the RHS:

x′ = −x+ xy and y′ = −2y + 2y2 + 12(y − x2) = 10y − 12x2 + 2y2. (3)



Our problem?

A natural question: How to find such a quadratization that preserve certain
dynamical/numerical properties of the original system?

Consider an ODE x′ = −x+ x3, add a new variable y = g1(x) = x2:

x′ = −x+ xy and y′ = −2y + 2y2. (2)

We can add/subtract y − x2 with any coefficients from the RHS:

x′ = −x+ xy and y′ = −2y + 2y2 + 12(y − x2) = 10y − 12x2 + 2y2. (3)



Our problem?

Figure: Plot of the equation (2) and (3) after quadratizaiton with initial condition
X0 = [x0, y0 = x2

0] = [0.1, 0.01].

The two systems are mathematically equivalent; however, the
results obtained through numerical integration differ!!!



Our problem?

Figure: Plot of the equation (2) and (3) after quadratizaiton with initial condition
X0 = [x0, y0 = x2

0] = [0.1, 0.01].

The two systems are mathematically equivalent; however, the
results obtained through numerical integration differ!!!



Our solution: some definitions

What is equilibrium, dissipativity of an ODE system?

Definition (Equilibrium)

For a polynomial ODE system x′ = p(x), a point x∗ ∈ Rn is called an
equilibrium if p (x∗) = 0.

Example: Consider
x′ = −x(x− 1)(x− 2) (4)

Set the RHS equal to 0 ⇒ three equilibria: 0, 1, 2.



Our solution: some definitions

Definition (Dissipativity)

An ODE system x′ = p(x) is called dissipative at an equilibrium point x∗ if
all the eigenvalues of the Jacobian J(p)|x=x∗ of p and x∗ have negative
real part.

Important fact: Dissipativity at x∗ =⇒ Asymptotic stability at x∗

(i.e. exponential convergence to x∗ in a small neighbourhood)

Example: Among the three equilibria 0, 1, 2 of x′ = −x(x− 1)(x− 2),
x = 0 and x = 2 are dissipative but x = 1 is not:

J(p)|x=1 =
[
−3x2 + 6x− 2

]∣∣
x=1

= [1]

which has a positive real part in its eigenvalue.



Our solution: some definition

Trajectories of the differential equation x′ = −x(x− 1)(x− 2)

Trajectory from x0 = 1.1 converge to equilibrium x = 2 instead of x = 1



Dissipative quadratization: what?

Definition (Dissipative quadratization)

Assume that a system x′ = p(x) is dissipative at an equilibrium x∗ ∈ Rn.
Then a quadratization given by y = g (new variables introduced), q1 and
q2 is called dissipative at x∗ if the system

x′ = q1(x,y), y′ = q2(x,y)

is dissipative at a point (x∗,g (x∗)).

Theorem (Main theoretical result)

For every polynomial ODE system x′ = p(x), there exists a quadratization
that is dissipative at all the dissipative equilibria of x′ = p(x).

How we find such a quadratization?



Dissipative quadratization: what?

Definition (Dissipative quadratization)

Assume that a system x′ = p(x) is dissipative at an equilibrium x∗ ∈ Rn.
Then a quadratization given by y = g (new variables introduced), q1 and
q2 is called dissipative at x∗ if the system

x′ = q1(x,y), y′ = q2(x,y)

is dissipative at a point (x∗,g (x∗)).

Theorem (Main theoretical result)

For every polynomial ODE system x′ = p(x), there exists a quadratization
that is dissipative at all the dissipative equilibria of x′ = p(x).

How we find such a quadratization?



Dissipative quadratization: what?

Definition (Dissipative quadratization)

Assume that a system x′ = p(x) is dissipative at an equilibrium x∗ ∈ Rn.
Then a quadratization given by y = g (new variables introduced), q1 and
q2 is called dissipative at x∗ if the system

x′ = q1(x,y), y′ = q2(x,y)

is dissipative at a point (x∗,g (x∗)).

Theorem (Main theoretical result)

For every polynomial ODE system x′ = p(x), there exists a quadratization
that is dissipative at all the dissipative equilibria of x′ = p(x).

How we find such a quadratization?



Dissipative quadratization: How? (Overview)



Dissipative quadratization: How? (Example)

Back to x′ = −x(x− 1)(x− 2), start with a quadratization via y = x2:

{
x′ = −xy + 3x2 − 2x
y′ = −2y2 + 6xy − 4x2

The system is not yet dissipative but has a “good” combinatorial property:
the new variable y can be written as x2

⇒
We can add y − x2 (stabilizer) to RHS:

x′ = −xy + 3x2 − 2x

y′ = −2y2 + 6xy − 4x2 − λ
(
y − x2)

↑

still a quadratization



Dissipative quadratization: How? (Example)

Back to x′ = −x(x− 1)(x− 2), start with a quadratization via y = x2:{
x′ = −xy + 3x2 − 2x
y′ = −2y2 + 6xy − 4x2

The system is not yet dissipative but has a “good” combinatorial property:
the new variable y can be written as x2

⇒
We can add y − x2 (stabilizer) to RHS:

x′ = −xy + 3x2 − 2x

y′ = −2y2 + 6xy − 4x2 − λ
(
y − x2)

↑

still a quadratization



Dissipative quadratization: How? (Example)

Back to x′ = −x(x− 1)(x− 2), start with a quadratization via y = x2:{
x′ = −xy + 3x2 − 2x
y′ = −2y2 + 6xy − 4x2

The system is not yet dissipative but has a “good” combinatorial property:

the new variable y can be written as x2

⇒
We can add y − x2 (stabilizer) to RHS:

x′ = −xy + 3x2 − 2x

y′ = −2y2 + 6xy − 4x2 − λ
(
y − x2)

↑

still a quadratization



Dissipative quadratization: How? (Example)

Back to x′ = −x(x− 1)(x− 2), start with a quadratization via y = x2:{
x′ = −xy + 3x2 − 2x
y′ = −2y2 + 6xy − 4x2

The system is not yet dissipative but has a “good” combinatorial property:
the new variable y can be written as x2

⇒
We can add y − x2 (stabilizer) to RHS:

x′ = −xy + 3x2 − 2x

y′ = −2y2 + 6xy − 4x2 − λ
(
y − x2)

↑

still a quadratization



Dissipative quadratization: How? (Example, cntd.)

Jacobian of the previous system:

J =

[
−y + 6x− 2 −x

6y − 8x −4y + 6x

]
︸ ︷︷ ︸

inner-quadratic

−λ

[
0 0

−2x 1

]
︸ ︷︷ ︸

stabilizer

For λ = 1, 2, 4, 8, · · · we check the eigenvalues on equilibria (0, 0) and (2, 4),
results summarized in the following table:

λ at (0, 0) at (2, 4)

1 −2,−1 −2,3

2 −2,−2 −2,2

4 −2,−4 −2,0

8 −2,−8 -2,-4



Dissipative quadratization: How? (Example, cntd.)

Jacobian of the previous system:

J =

[
−y + 6x− 2 −x

6y − 8x −4y + 6x

]
︸ ︷︷ ︸

inner-quadratic

−λ

[
0 0

−2x 1

]
︸ ︷︷ ︸

stabilizer

For λ = 1, 2, 4, 8, · · · we check the eigenvalues on equilibria (0, 0) and (2, 4),
results summarized in the following table:

λ at (0, 0) at (2, 4)

1 −2,−1 −2,3

2 −2,−2 −2,2

4 −2,−4 −2,0

8 −2,−8 -2,-4



Dissipative quadratization: How? (Formalization)

What is the “good” combinatorial property: Inner-quadratic.

set of variables: {x1, · · · , xn︸ ︷︷ ︸
original

, g1, · · · , gm︸ ︷︷ ︸
introduced

}

Inner quadratic: ∀1 ⩽ i ⩽ m, there exist (not necessarily distinct) a, b ∈
{x1, . . . , xn, g1, . . . , gm} such that gi = ab.

Example: {x, g1 = x2, g2 = x4}: !, {x, g1 = x2, g2 = x5}: %

A quadratization will be called inner-quadratic if the set of new variables g
is inner-quadratic.

How to find the inner-quadratic quadratization: Branch & Bound search.



Dissipative quadratization: How? (Formalization)

What is the “good” combinatorial property: Inner-quadratic.

set of variables: {x1, · · · , xn︸ ︷︷ ︸
original

, g1, · · · , gm︸ ︷︷ ︸
introduced

}

Inner quadratic: ∀1 ⩽ i ⩽ m, there exist (not necessarily distinct) a, b ∈
{x1, . . . , xn, g1, . . . , gm} such that gi = ab.

Example: {x, g1 = x2, g2 = x4}: !, {x, g1 = x2, g2 = x5}: %

A quadratization will be called inner-quadratic if the set of new variables g
is inner-quadratic.

How to find the inner-quadratic quadratization: Branch & Bound search.



Dissipative quadratization: How? (Formalization)

What is the “good” combinatorial property: Inner-quadratic.

set of variables: {x1, · · · , xn︸ ︷︷ ︸
original

, g1, · · · , gm︸ ︷︷ ︸
introduced

}

Inner quadratic: ∀1 ⩽ i ⩽ m, there exist (not necessarily distinct) a, b ∈
{x1, . . . , xn, g1, . . . , gm} such that gi = ab.

Example: {x, g1 = x2, g2 = x4}: !, {x, g1 = x2, g2 = x5}: %

A quadratization will be called inner-quadratic if the set of new variables g
is inner-quadratic.

How to find the inner-quadratic quadratization: Branch & Bound search.



Dissipative quadratization: How? (Formalization)

What is the “good” combinatorial property: Inner-quadratic.

set of variables: {x1, · · · , xn︸ ︷︷ ︸
original

, g1, · · · , gm︸ ︷︷ ︸
introduced

}

Inner quadratic: ∀1 ⩽ i ⩽ m, there exist (not necessarily distinct) a, b ∈
{x1, . . . , xn, g1, . . . , gm} such that gi = ab.

Example: {x, g1 = x2, g2 = x4}: !, {x, g1 = x2, g2 = x5}: %

A quadratization will be called inner-quadratic if the set of new variables g
is inner-quadratic.

How to find the inner-quadratic quadratization: Branch & Bound search.



Dissipative quadratization: How? (Formalization)

What is the “good” combinatorial property: Inner-quadratic.

set of variables: {x1, · · · , xn︸ ︷︷ ︸
original

, g1, · · · , gm︸ ︷︷ ︸
introduced

}

Inner quadratic: ∀1 ⩽ i ⩽ m, there exist (not necessarily distinct) a, b ∈
{x1, . . . , xn, g1, . . . , gm} such that gi = ab.

Example: {x, g1 = x2, g2 = x4}: !, {x, g1 = x2, g2 = x5}: %

A quadratization will be called inner-quadratic if the set of new variables g
is inner-quadratic.

How to find the inner-quadratic quadratization: Branch & Bound search.



Dissipative quadratization: Algorithm

Input: a system x′ = p(x) with a list of dissipative equilibria x∗
1, . . . ,x

∗
ℓ :

(Step 1) Compute an inner-quadratic quadratization with introduced variables
y1 = g1(x), . . . , ym = gm(x), q1(x,y), and q2(x,y).

(Step 2) Construct the stabilizer h(x,y) for the quadratization and set the
coefficient of stabilizer λ = 1

(Step 3) While True:
▶ Construct a quadratic system Σλ{

x′ = q1(x,y)

y′ = q2(x,y)− λh(x,y)

▶ Check if Σλ dissipative at
(
x∗
i ,g

(
x∗
i

))
for every 1 ⩽ i ⩽ ℓ, if yes,

return, otherwise, set λ = 2λ.

As λ is large enough, the system Σλ is dissipative at all equilibria: Proofs
in Proposition 2 and 3 in the paper.



Dissipative quadratization: Algorithm

Input: a system x′ = p(x) with a list of dissipative equilibria x∗
1, . . . ,x

∗
ℓ :

(Step 1) Compute an inner-quadratic quadratization with introduced variables
y1 = g1(x), . . . , ym = gm(x), q1(x,y), and q2(x,y).

(Step 2) Construct the stabilizer h(x,y) for the quadratization and set the
coefficient of stabilizer λ = 1

(Step 3) While True:
▶ Construct a quadratic system Σλ{

x′ = q1(x,y)

y′ = q2(x,y)− λh(x,y)

▶ Check if Σλ dissipative at
(
x∗
i ,g

(
x∗
i

))
for every 1 ⩽ i ⩽ ℓ, if yes,

return, otherwise, set λ = 2λ.

As λ is large enough, the system Σλ is dissipative at all equilibria: Proofs
in Proposition 2 and 3 in the paper.



Dissipative quadratization: Algorithm

Input: a system x′ = p(x) with a list of dissipative equilibria x∗
1, . . . ,x

∗
ℓ :

(Step 1) Compute an inner-quadratic quadratization with introduced variables
y1 = g1(x), . . . , ym = gm(x), q1(x,y), and q2(x,y).

(Step 2) Construct the stabilizer h(x,y) for the quadratization and set the
coefficient of stabilizer λ = 1

(Step 3) While True:
▶ Construct a quadratic system Σλ{

x′ = q1(x,y)

y′ = q2(x,y)− λh(x,y)

▶ Check if Σλ dissipative at
(
x∗
i ,g

(
x∗
i

))
for every 1 ⩽ i ⩽ ℓ, if yes,

return, otherwise, set λ = 2λ.

As λ is large enough, the system Σλ is dissipative at all equilibria: Proofs
in Proposition 2 and 3 in the paper.



Dissipative quadratization: Algorithm

Input: a system x′ = p(x) with a list of dissipative equilibria x∗
1, . . . ,x

∗
ℓ :

(Step 1) Compute an inner-quadratic quadratization with introduced variables
y1 = g1(x), . . . , ym = gm(x), q1(x,y), and q2(x,y).

(Step 2) Construct the stabilizer h(x,y) for the quadratization and set the
coefficient of stabilizer λ = 1

(Step 3) While True:
▶ Construct a quadratic system Σλ{

x′ = q1(x,y)

y′ = q2(x,y)− λh(x,y)

▶ Check if Σλ dissipative at
(
x∗
i ,g

(
x∗
i

))
for every 1 ⩽ i ⩽ ℓ, if yes,

return, otherwise, set λ = 2λ.

As λ is large enough, the system Σλ is dissipative at all equilibria: Proofs
in Proposition 2 and 3 in the paper.



Dissipative quadratization: Algorithm

Input: a system x′ = p(x) with a list of dissipative equilibria x∗
1, . . . ,x

∗
ℓ :

(Step 1) Compute an inner-quadratic quadratization with introduced variables
y1 = g1(x), . . . , ym = gm(x), q1(x,y), and q2(x,y).

(Step 2) Construct the stabilizer h(x,y) for the quadratization and set the
coefficient of stabilizer λ = 1

(Step 3) While True:
▶ Construct a quadratic system Σλ{

x′ = q1(x,y)

y′ = q2(x,y)− λh(x,y)

▶ Check if Σλ dissipative at
(
x∗
i ,g

(
x∗
i

))
for every 1 ⩽ i ⩽ ℓ, if yes,

return, otherwise, set λ = 2λ.

As λ is large enough, the system Σλ is dissipative at all equilibria: Proofs
in Proposition 2 and 3 in the paper.



Inner-quadratic: Why and How?

Retinal behind:
Quadratic relation between variables ⇒ Flexibility to “tune” the RHS ⇒
Adding the stabilizers to force the trajectory to be stable.



Applications

Applications of dissipative quadratization include:

■ Preserving bistability: fundamental property for models in life sciences
and chemical reaction network.

■ Reachability analysis
(more details later)



Applications

Applications of dissipative quadratization include:

■ Preserving bistability: fundamental property for models in life sciences
and chemical reaction network.

■ Reachability analysis
(more details later)



Applications

Applications of dissipative quadratization include:

■ Preserving bistability: fundamental property for models in life sciences
and chemical reaction network.

■ Reachability analysis
(more details later)



Application to reachability analysis

Given an ODE system x′ = p(x), a set S ⊆ Rn of possible initial conditions,
and a time t ∈ R>0, compute a set containing the set{

x(t) | x′ = p(x) & x(0) ∈ S
}
⊆ Rn

of all points reachable from S at time t.

One recent approach: Using Carleman linearization to reduce the problem
to the linear case. (Forets, Schilling ’ 2021)

Restriction: quadratic system with dissipativity and weak nonlinearity.

Our algorithm relaxes the restriction!



Application to reachability analysis

Given an ODE system x′ = p(x), a set S ⊆ Rn of possible initial conditions,
and a time t ∈ R>0, compute a set containing the set{

x(t) | x′ = p(x) & x(0) ∈ S
}
⊆ Rn

of all points reachable from S at time t.

One recent approach: Using Carleman linearization to reduce the problem
to the linear case. (Forets, Schilling ’ 2021)

Restriction: quadratic system with dissipativity and weak nonlinearity.

Our algorithm relaxes the restriction!



Application to reachability analysis

Given an ODE system x′ = p(x), a set S ⊆ Rn of possible initial conditions,
and a time t ∈ R>0, compute a set containing the set{

x(t) | x′ = p(x) & x(0) ∈ S
}
⊆ Rn

of all points reachable from S at time t.

One recent approach: Using Carleman linearization to reduce the problem
to the linear case. (Forets, Schilling ’ 2021)

Restriction: quadratic system with dissipativity and weak nonlinearity.

Our algorithm relaxes the restriction!



Application to reachability analysis

Consider the Duffing equation:

x′′ = x+ x3 − x′

rewrite as a first-order system by introducing x1 := x, x2 := x′:

x′
1 = x2, x′

2 = x1 + x3
1 − x2.

Three equilibria: x∗ = (0, 0), (−1, 0), (1, 0).

Dissipative equilibrium: Origin (0, 0).

Inner-quadratic quadratization: via a new variable y(x) = x2
1:

x′
1 = x2, x′

2 = x1y − x2 + x1, y′ = 2x1x2.

Dissipative quadratization: take λ = 1 and add the stabilizer:
x′
1 = x2

x′
2 = x1y + x1 − x2

y′ = −y + x2
1 + 2x1x2



Application to reachability analysis

Consider the Duffing equation:

x′′ = x+ x3 − x′

rewrite as a first-order system by introducing x1 := x, x2 := x′:

x′
1 = x2, x′

2 = x1 + x3
1 − x2.

Three equilibria: x∗ = (0, 0), (−1, 0), (1, 0).

Dissipative equilibrium: Origin (0, 0).

Inner-quadratic quadratization: via a new variable y(x) = x2
1:

x′
1 = x2, x′

2 = x1y − x2 + x1, y′ = 2x1x2.

Dissipative quadratization: take λ = 1 and add the stabilizer:
x′
1 = x2

x′
2 = x1y + x1 − x2

y′ = −y + x2
1 + 2x1x2



Application to reachability analysis

Consider the Duffing equation:

x′′ = x+ x3 − x′

rewrite as a first-order system by introducing x1 := x, x2 := x′:

x′
1 = x2, x′

2 = x1 + x3
1 − x2.

Three equilibria: x∗ = (0, 0), (−1, 0), (1, 0).

Dissipative equilibrium: Origin (0, 0).

Inner-quadratic quadratization: via a new variable y(x) = x2
1:

x′
1 = x2, x′

2 = x1y − x2 + x1, y′ = 2x1x2.

Dissipative quadratization: take λ = 1 and add the stabilizer:
x′
1 = x2

x′
2 = x1y + x1 − x2

y′ = −y + x2
1 + 2x1x2



Application to reachability analysis

For the initial conditions x1(0) = 0.1, x2(0) = 0.1, y(0) = x1(0)
2 = 0.01, the

system satisfies dissipativity and weak nonlinearity, we apply the
reachability algorithm with truncation order N = 5:

Figure: Reachability analysis results with the computed trajectory (gray) and
overapproximation of the reachable set (light blue). The estimate reevaluation
time t = 4.



Conclusion and future work

Summary:

■ We proved that in any dissipative equilibria of the polynomial ODE
system, the dissipative quadratization exists.

■ We presented an algorithm capable of computing dissipative
quadratization by first transforming the system into an inner-quadratic
system.

■ We showed applications in reachability analysis and numerical
simulations.

Future work:

■ Extend the results and algorithms beyond the polynomial system
■ Exploring the preservation of other stability properties, such as limit

cycles, attractors, and Lyapunov functions.



Conclusion and future work

Summary:

■ We proved that in any dissipative equilibria of the polynomial ODE
system, the dissipative quadratization exists.

■ We presented an algorithm capable of computing dissipative
quadratization by first transforming the system into an inner-quadratic
system.

■ We showed applications in reachability analysis and numerical
simulations.

Future work:

■ Extend the results and algorithms beyond the polynomial system
■ Exploring the preservation of other stability properties, such as limit

cycles, attractors, and Lyapunov functions.



Thank you for your attention!

DQbee: https://github.com/yubocai-poly/DQbee

Figure: Paper Figure: Code

I would like to express my gratitude to the ETAPS community and École
Polytechnique for the financial support provided for this conference, as well as to
my supervisor, Professor Gleb Pogudin, for his meticulous guidance.

https://github.com/yubocai-poly/DQbee

