

Dissipative quadratizations of polynomial ODE systems - demo presentation: DQBEE

Yubo Cai 1 $\,$ Gleb Pogudin 2

¹École Polytechnique

²LIX, CNRS, École Polytechnique

April 10 - TACAS 2024 - Luxembourg

Toy example:

Consider a one-dimensional ODE system:

$$x' = x^4$$
 (degree of RHS = 4)

Toy example:

Consider a one-dimensional ODE system:

 $x' = x^4$ (degree of RHS = 4)

Goal: Add new variables that $\Rightarrow \deg \leq 2$

Toy example:

Consider a one-dimensional ODE system:

$$x' = x^4$$
 (degree of RHS = 4)

Goal: Add new variables that $\Rightarrow \deg \leq 2$

Solution: We introduce $y = x^3$:

$$\left\{ \begin{array}{l} x' = \underline{xy} \\ \\ y' = 3x^2x' \end{array} \right.$$

Toy example:

Consider a one-dimensional ODE system:

$$x' = x^4$$
 (degree of RHS = 4)

Goal: Add new variables that $\Rightarrow \deg \leq 2$

Solution: We introduce $y = x^3$:

$$\begin{cases} x' = \underline{xy} \\ y' = 3x^2x' = 3x^6 \end{cases}$$

Toy example:

Consider a one-dimensional ODE system:

$$x' = x^4$$
 (degree of RHS = 4)

Goal: Add new variables that $\Rightarrow \deg \leq 2$

Solution: We introduce $y = x^3$:

$$\left\{ \begin{array}{l} x'=\underline{xy}\\\\ y'=3x^2x'=3x^6=\underline{3y^2} \end{array} \right.$$

DONE!

Equilibrium, Dissipative?

 $\operatorname{Consider}$

$$x' = -x(x-1)(x-2)$$
(1)

Set the RHS equal to $0 \Rightarrow$ three equilibria: 0, 1, 2.

Equilibrium, Dissipative?

 $\operatorname{Consider}$

$$x' = -x(x-1)(x-2)$$
(1)

Set the RHS equal to $0 \Rightarrow$ three equilibria: 0, 1, 2.

Among the three equilibria 0, 1, 2, x = 0 and x = 2 are dissipative but x = 1 is not:

$$J(\mathbf{p})|_{x=1} = \left[-3x^2 + 6x - 2\right]|_{x=1} = [1]$$

which has a positive real part in its eigenvalue.

Equilibrium, Dissipative?

 $\operatorname{Consider}$

$$x' = -x(x-1)(x-2)$$
(1)

Set the RHS equal to $0 \Rightarrow$ three equilibria: 0, 1, 2.

Among the three equilibria 0, 1, 2, x = 0 and x = 2 are dissipative but x = 1 is not:

$$J(\mathbf{p})|_{x=1} = \left[-3x^2 + 6x - 2\right]|_{x=1} = [1]$$

which has a positive real part in its eigenvalue.

Important fact: Dissipativity at equilibrium $\mathbf{x}^* \implies$ Asymptotic stability at \mathbf{x}^* (*i.e. exponential convergence to* \mathbf{x}^* *in a small neighbourhood*)

Dissipative quadratization?

DQBEE: a Python package computes dissipative quadratization:

Fast.

- Easy to use.
- Great visualization.
- Optimal.

 ${\small Code \ link: \ https://github.com/yubocai-poly/DQbee}$

How far it goes: Coupled duffing oscillators

Consider a coupled duffing system with *n* oscillators where $A \in \mathbb{R}^{n \times n}$, $\delta \in \mathbb{R}$:

$$\mathbf{x}'' = A\mathbf{x} - (A\mathbf{x})^3 - \delta\mathbf{x}',$$

Transfer to first order: $\mathbf{z} = [z_1, \ldots, z_n]^{\top}$ for the derivatives of \mathbf{x} :

$$\dot{\mathbf{x}} = \mathbf{z}, \quad \mathbf{z}' = A\mathbf{x} - (A\mathbf{x})^3 - \delta\mathbf{z}.$$

We have 2^n dissipative equilibria.

Setting: n = 1, ..., 8 taking $\delta = 2$ and A being the tridiagonal matrix with ones on the diagonal and $\frac{1}{3}$ on the adjacent diagonals.

How far it goes: results

n	dimension	# equilibria	# new vars	time (inner-quadratic)	time (dissipative)	
					NUMPY	Routh-Hurwitz
1	2	2	1	0.02	0.05	0.07
2	4	4	2	0.07	0.19	0.65
3	6	8	4	0.20	0.74	36.57
4	8	16	5	0.39	1.62	1179.33
5	10	32	7	0.72	4.30	> 2000
6	12	64	9	1.20	11.28	> 2000
7	14	128	10	1.75	28.23	> 2000
8	16	256	12	2.63	78.70	> 2000

Table: Runtimes (in seconds) for n coupled Duffing oscillators, results were obtained on a laptop with the following parameters: Apple M2 Pro CPU @ 3.2 GHz, MacOS Ventura 13.3.1, CPython 3.9.1.

Thank you for your attention!

DQBEE: https://github.com/yubocai-poly/DQbee

Figure: Paper

Figure: Code

Today 4:30 pm - Room: Hollenfels - TACAS: Simulation